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TECHNICAL NOTE D-77 

UNSTEADY STAGNATION-POINT REAT TRANSFER 

By E. M. Sparrow 

SUMMARY 

An analysis i s  m a d e  of the unsteady, forced-convection heat trans- 
f e r  at a stagnation point whose surface temperature var ies  a r b i t r a r i l y  
with time. The flow is  steady and laminar. The first s tep  i n  the anal- 
ys is  yields  the heat-transfer response t o  a sudden change (s tep  function) 
i n  w a l l  temperature, and t h i s  i s  then generalized by a superposition 
technique t o  apply t o  a rb i t ra ry  variations. 
sults i s  i l l u s t r a t e d  by application to  the  case where the surface tem- 
perature var ies  l i nea r ly  with time. 
unsteady-heat-transfer resu l t s  of t h i s  analysis and those computed under 
the  assumption of quasi-steady conditions. Numerical r e su l t s  are pre- 
sented f o r  a Prandtl number of 0.7 ( i .e- ,  gases). 

Use of the generalized re-  

Comparison i s  made between the 

I n  a number of important technical applications,  it i s  necessary t o  
compute the forced-convection heat t ransfer  from a surface whose temper- 
a ture  i s  changing with t i m e .  To solve such problems by a d i r ec t  a t tack 
on the  governing d i f f e ren t i a l  equations (conservation l a w s )  i s  normally 
an exceedingly formidable task. 
t o  simplify matters by supposing that ,  at  each and every moment, there  
ex i s t s  an instantaneous steady s ta te .  Under such an assumption, the 
steady-state re la t ions fo r  the heat-transfer coeff ic ient  are used i n  
conjunction with the instantaneous temperature difference t o  compute a 
heat- t ransfer  ra te .  The phrase quasi-steady i s  usually applied t o  de- 
scr ibe the s i tua t ion  i n  which the  t rans ien t  passes through a sequence 
of instantaneous steady s t a t e s  - 

As a consequence, it has been customary 

I n  r e a l i t y ,  there  is  always a difference between the actual  instan- 
taneous heat t ransfer  and the quasi-steady value, the  extent of which 
depends upon the rapidi ty  of the temperature changes and on the response 
charac te r i s t ics  of the flow. During the i n i t i a l  stages of a t rans ien t  
process o r  under conditions of very rapid temperature change, it is not 
expected tha t  the s t a t e  w i l l  be quasi-steady. While nonquasi-steady 
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si tuat ions can e x i s t  i n  both laminar and turbulent f lows ,  they a re  more 
l i k e l y  i n  the laminar case because of the re la t ive ly  slower response of 
such a flow. 

The al ternat ive t o  invoking the quasi-steady assumption i s  t o  s tar t  
with the governing d i f f e r e n t i a l  equations and solve f o r  the e n t i r e  time- 
his tory of the heat-transfer t rans ien t  from i t s  beginning t o  i t s  end. A 
promising beginning d o n g  these l i n e s  has been made fo r  internal  flow i n  
tubes and f l a t  ducts; solutions of the unsteady energy equation have 
been obtained f o r  the condition of f u l l y  developed, steady velocity dis- 
tr ibutions,  both laminar and turbulent (refs. 1 t o  4) .  For external. 
flow, which i s  the area of i n t e r e s t  here, the problem i s  more d i f f i c u l t  
and analysis has been confined t o  computing s m a l l  deviations from quasi- 
steady heat t ransfer  when the s t a t e  i s  not qui te  quasi-steady ( re fs .  5 
t o  7 ) .  Consideration has been given only t o  laminar flow. 

I n  the present investigation, a t ten t ion  is  directed t o  the unsteady 
heat  t ransfer  i n  a laminar stagnation-point flow. The goal. i s  t o  deter-  
mine the complete time-history of the heat-transfer t rans ien t  associated 
with an arbi t rary time-variation of t he  surface temperature. The anal- 
y s i s  i s  carried out f o r  steady flow of an incompressible, constant- 
property f l u i d  with negligible viscous dissipation. Also, the  w a l l  tem- 
perature is  s p a t i a l l y  uniform at  any in s t an t  of time. The f i rs t  s t ep  i n  
the  study i s  t o  determine the  heat-transfer response t o  a sudden change 
(s tep  function) i n  w a l l  temperature, s t a r t i n g  from an i n i t i a l  condition 
of no heat t ransfer  (Tw = Tm). 
fundamental solution, since by a superposition technique it i s  general- 
ized t o  apply for a rb i t r a ry  time-variations i n  w a l l  temperature. The 
i n i t i a l  conditions are also generalized t o  permit the t rans ien t  t o  begin 
e i t h e r  f rom a condition of steady-state heat t ransfer  (q # T,) as  well  
as a no-heat-transfer s i t ua t ion  (q = Tm). 
t h e  generalized r e su l t s ,  a heat-transfer computation i s  carr ied out for 
the  case where the w a l l  temperature var ies  l i n e a r l y  with time, t h a t  
i s ,  a ramp function. Comparison i s  made between the unsteady-heat- 
t ransfer  r e su l t s  of the present theory and those computed under the 
quasi-steady assumption. 
dure i s  discussed f o r  estimating unsteady heat t ransfer  under conditions 
of  variable properties and viscous dissipation. 

The step-function r e s u l t  serves as a 

To demonstrate the use of 

I n  the f i n a l  section of the report ,  a proce- 

Although the theoret ical  development may apply t o  any Prandtl nun- 
ber  Pr, the numerical computations have been carr ied out f o r  Pr = 0.7 
( i .e. ,  gases). 

SYMBOLS 

Y cn 
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tP 

A* proportionality constant, see eq. (28)  

specific heat a t  constant pressure P C 
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heat-transfer coeff ic ient ,  q/(Tw - T,) 
thermal conductivity 

Prandtl  number, cpp/k 

heat-transfer r a t e  per u n i t  area a t  surface 

s t a t i c  temperature 

t i m e  

dummy integration variable 

free-stream velocity 

velocity component i n  x-direc t ion 

proportionali ty constant, see eq. (3b) 

velocity component i n  y-direction 

coordinate measuring distance along surface 

coordinate measuring distance normal t o  surface 

thermal d i f fus iv i ty ,  k/pcp 

thermal boundary-layer thickness 

velocity boundary-layer thickness 

dimensionless y-coordinate, y/6 

Pohlhausen parameter, G2ul/v 

absolute viscosi ty  

kinematic v i s  cos i t y  

dummy integrat ion vaxiable 

density 

dimensionless time, u l t  

dummy integrat ion variable 

aimensionless boundary-layer thickness, 4 6  
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Subscripts : 

i n s  t 

qs 

ss 

W 

m 

0 

T 

T-0. a55 

T* 

T-T* 

The 
response 

i n s t  ant aneous 

quas i- s t e ady 

steady state 

surf ace 

f r e e  stream 

at time 0 

a t  time T 

at time T - 0.855 

function of T* 

function of T - T* 

STEP CHANGE IN W A L L  TEMPERATURF: 

Analysis 

s t a r t i n g  point f o r  t h i s  study of the t rans ien t  heat-transfer 
t o  a s t ep  change i n  w a l l  temperature i s  the conservation-of- 

energy principle.  
t o  unsteady heat t ransfer  i n  a constant-property, incompressible, 
laminar-boundary-layer flow with negligible viscous diss ipat ion is  

The mathematical statement of t h i s  l a w  appropriate 

Integrating with respect t o  y gives the  over-all  energy balance 

where A is t h e  thickness of t he  thermal boundary layer. This inte-  
grated energy equation w i l l  now be used i n  determining the  unsteady tem- 
perature dis t r ibut ion and heat t ransfer  i n  a stagnation-point flow. Con- 
s iderat ion w i l l  be given here to t h e  s i t u a t i o n  where the t rans ien t  begins 
from an equilibrium condition where there  i s  no heat t r a n s f e r  (q = T,). 

M 
I 
UI 
0 
I+ 
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I n  a l a t e r  sect ion,  generalization w i l l  be made t o  include t rans ien ts  
which begin from an already established steady-state s i t ua t ion  (T, # T,). 

I n  order t o  a t tack  equation (2), it i s  first necessary t o  know t h e  
d i s t r ibu t ion  of the  veloci ty  u across t h e  boundary layer .  A conse- 
quence of the constancy of t he  f l u i d  properties i s  t h a t  the veloci ty  
d i s t r ibu t ion  is not influenced by the temperature problem, and, as a 
r e s u l t ,  the usual steady-state solution f o r  stagnation-point boundary- 
layer  flow can be used here. An excellent polynomial representation 
for 

* 
LD 0 
El I lowing formr 

u, derived by the  K&rm&-Pohlhausen method (ref. 8) ,  takes t h e  f o l -  

T - T, 3 t > O  

Tw - Tm O < v < A  
Y - -  

I 

The thermal boundasy-layer thickness 
bu t  i s  independent of x since T~ 

A i s  an unknown function of time 
i s  spa t i a l ly  uniform.' The 

n 'This w i l l  also be t rue  when Td - T, - x i n  a stagnation-point 
flow. 

where 

(3b) 
2 rl = Y/% u, = "1% A = 6 UJV 

The ve loc i ty  boundary-layer thickness i s  denoted by 6, while A i s  t h e  

stagnation-point flow, reference 8 gives 
c Pohlhausen parameter and ul i s  a proportionali ty constant. For 

h = 7.052 so that 6 = (7.052 v/ul) 1 /2  ( 3 4  

Not only i s  equation (3a) a good representation within the  veloci ty  
boundary l aye r  (i.e., f o r  y < 6 ) ;  but it a l s o  serves well  f o r  a range 
outside the  veloci ty  boundary-layer, where u/U, i s  supposed t o  be 
unity.  For example, a t  y/6 = 1.1, equation (3a) gives u/Um = 1.002; 
while, a t  y/6 = 1.18, which represents the l a r g e s t  value of i n t e r e s t  
here, equation (3a) gives 1.01, Finally,  it may be worthwhile t o  re- 
i t e r a t e  the  well-established f act  t ha t  %he veloci ty  boundary-layer thick-  
ness f o r  a stagnation-point flow i s  independent of 
equation (3c). 

x, as i s  seen from 

Thus, with an accurate velocity d i s t r ibu t ion  available,  considera- 
t i o n  may now be given t o  solving equation ( 2 ) .  
may be attacked by wri t ing the  temperature d i s t r ibu t ion  as a polynomial 
which satisfies the  e s sen t i a l  boundary conditions: 

This in t eg ra l  equation 
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dependence of A upon time w i l l  be determined by sa t i s fy ing  the  conser- 
vation of energy equation ( 2 ) .  When equations (3) and (4) are introduced 
in to  equation ( 2 )  and the integrat ions are car r ied  out,  there  results the  
following f i r s t -order  ordinary d i f f e r e n t i a l  equation f o r  A: 

(5) 

To complete the  statement of t he  problem, it is necessary t o  give 
the  i n i t i a l  condition on A. For the  s i t ua t ion  where the  t rans ien t  be- 
gins from a condition of no heat  t ransfer ,  all the  f l u i d  i n i t i a l l y  pos- 
sesses the temperature T, and, as a r e su l t ,  

A = O  at t = O  (6) 

By using equation ( 3 c ) ,  ul may be eliminated i n  favor of ‘6, and 
A may be evaluated as 7.052. For computational convenience, new vari-  
ables cp and T are introduced by the  def ini t ions 

cp = 4 s  7 = Ul t  ( 7 )  

and it i s  noted tha t ,  s ince 8 is  constant, the  time var ia t ions  of cp 
and A are ident ical .  With these modifications and using the  value of 
0.7 f o r  the Prandtl number (gases),  equation (5) becomes 

cp dcp = 0.00584444 d7 (8) 
cp6 - 14.9202 (p5 + 67.0343 (p4 - 144.882 cp3 + 138.646 

with the  boundary condition 

Once equation (8) has been solved f o r  
a ture  d is t r ibu t ion  (4) m a y  be used f o r  carrying out the  heat- t ransfer  
computation. 

cp, A i s  known, and the  temper- 

It i s  possible t o  obtain a closed-form ana ly t ica l  solut ion of equa- 
t i o n  (8) by using a p a r t i a l  f rac t ion  expansion. 
f i nd  the  s i x  roots of  t he  polynomial which appears i n  the denominator. 
With these,  and with considerable algebraic manipulation as out l ined i n  
the  appendix, equation (8) can be wr i t ten  as 

The f i rs t  s t ep  is  t o  

M 
I 

rp 

rr 

c 



b 

* 
0 m 
I 

i-4 

4 

L 

L 

- 0.00399594 + 0.00305397 - 0.0107341 + - 9*4463a cp - 1*17705 v2 5.37067 ~p + 15.2053 

acp = 0.005a4444 d.t 0.000729679 cp - 0.002ia670 
cp2 + 1.07320 cp + 0.820075 

Inspection of the  left-hand s ide of t h i s  equation shows t h a t  all terms 
lead  t o  elementary integrals .  Carrying out the  integrat ion and imposing 
the boundary condition (9)  provide the following r e l a t ion  between 
and T (i.e., between A and t): 

cp 

+ 0.683717 I n  9.44638 
T = -0.0363243 I n  

- 5.37067 cp + 
15.2053 

-+ 1.0732ocp + 0. 
0. a20075 0.0624250 I n  

- tan-10.735591 1 
Equation (11) provides the dimensionless time 
s ionless  thickness 
the  thermal boundary layer.  
growth of the  thermal boundary layer  i s  presented as t he  s o l i d  curve i n  
f igure  1. Certain in te res t ing  properties of the  solut ion are discussed 
below. 

T at  which a given dimen- 
Cp i s  achieved during the  course of development of 

A plot ,  based on equation (ll), showing t h e  

F i r s t ,  a t  very ear ly  times, when cp 
A << a ) ,  it would be expected tha t  heat  conduction would be r e l a t ive ly  
very important compared t o  energy convection. 
i s  supported by equation (8),  which shows t h a t  t he  conductive term - 
t he  constant i n  the  denominator - dominates over all the  other  terms 
when cp i s  s m a l l .  So, f o r  s m a l l  times, equation (8)  becomes 

i s  exceedingly s m a l l  (i. e., 

This i n t u i t i v e  fee l ing  

from which it follows t h a t  

cp = 1.27303 
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m 1  I 
UI 
0 
P 

r 

m 

* 

f 

This asymptote i s  plot ted as a s t r a i g h t  dotted l i n e  on f igure 1. For 
all 
solution of eq. (8))  t o  within 2 percent o r  be t t e r ,  the  deviation be- 
coming smaller as T decreases. 

7 < 0.145, the dotted l i n e  agrees with the s o l i d  curve (exact 

A t  the  other extreme, it i s  expected tha t ,  a f t e r  a long time has 
passed following the application of  t he  s tep  jump i n  w a l l  temperature, 
a steady-state heat-transfer s i t ua t ion  w i l l  be established. 
state solution is obtained by se t t i ng  
d t e r n a t e l y ,  se t t ing  dcp/dt = 0 i n  equation (8).  From t h i s ,  it i s  
found tha t  

The steady- 
dA/dt = 0 i n  equation (5) or, 

= 1.17705 (13) Ts s 

Inspection of the t rans ien t  solut ion (eq. (11)) indicates t h a t  the steady 
state i s  approached asymptotically as time grows l a rge r  and larger .  How- 
ever, dl prac t ica l  e f fec ts  of the t rans ien t  (e.g., all s igni f icant  heat- 
t ransfer  var ia t ions)  are over i n  a f i n i t e  time. 

cp (and hence Thus, with t h i s  solut ion f o r  
d i s t r ibu t ion  (eq. (4)) is  known and a t ten t ion  can now be turned t o  the 
computation of the heat t ransfer .  

A),  the  temperature 

Heat-Transfer Results for a Step Change 

The instantaneous heat f lux  at the  surface may be calculated by 
applying Fourier s l a w  : 

By u t i l i z ing  the temperature d is t r ibu t ion  (eq. ( 4 ) )  and introducing d i -  
mensionless vaziables, the expression f o r  q becomes 

or 

The heat  t ransfer  i s  seen t o  depend inversely on cp; and, as a conse- 
quence, q 
and then decreases monotonically with time. 

achieves very high values immediately following the  s tep  jump 

I 
I 
I 
1 

' 1  
1 
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A convenient representation of the  heat t r ans fe r  may be achieved 
by introducing the  steady-state resu l t s .  
equation (15a) yields  

By noting t h a t  qSs = 1.17705, 

Then, t h e  r a t i o  of t h i s  equation with (15a) leads t o  the  simple form 

This quotient of the  instantaneous t o  the steady-state heat  t rans-  
f e r  has been p lo t ted  as a function of time i n  f igure  2 by making use of 
t he  previously determined values of cp. As expected, there  are very 
high heat-transfer rates a t  ear ly  times since the thermal boundary l aye r  
i s  thin.  An ana ly t ica l  representation appropriate t o  ear ly  times may be 
obtained by u t i l i z i n g  t h e  asymptotic expression (eq. ( 1 2 ) )  f o r  cp. With 
t h i s ,  equation (17) becomes 

q 0.9246 g,, = ~-p- 
This result, p lo t t ed  as a s t r a igh t  dotted l i n e  on f igure  2, i s  cor rec t  
t o  within 2 percent when and becomes increasingly accurate 
as z decreases. For l a rge  times, the heat  t r ans fe r  approaches the  
steady-state condition asymptotically. However, a p rac t i ca l  measure of 
the  duration of t he  t rans ien t  can be obtained from the  t i m e  required f o r  

z = 0.145 

q t o  approach t o  within 5 percent 
ure 2, t h e  5-percent tlme i s  found 

T5% = 

of i t s  steady-state value. From f ig -  
t o  be 

1 . 7  or t e- 
5% U l  

An informative rephrasing of equation (19) may be achieved by introduc- 
ing U, from equation (3b). Then, 

X t5$ = 1 . 7  - 
Um 

Now, x/U, is  the  time required f o r  f l u i d  moving a t  veloci ty  U, t o  
t raverse  the  distance x. Although, as expected, 
excess of 
A similar r e s u l t  has also been found for thermal s t e p  functions i n  
laminar and turbulent pipe flows (see re fs .  3 and 4). 

i s  somewhat i n  
x/U,, these times are  s t i l l  of t he  same order of magnitude. t5$ 



10 

The s t ep  function i s  the  most rapid type of w a l l  temperature 
change, and it would not be expected t h a t  quasi-steady conditions would 
prevai l  throughout the  t rans ien t  period. However, as a matter of cur i -  
os i ty ,  t he  quasi-steady heat  t r ans fe r  w i l l  be computed. This computa- 
t i o n  is  carr ied out  by using the  steady-state r e l a t ion  f o r  the  heat- 
t ransfer  coeff ic ient  i n  conjunction with the instantaneous temperature 
difference. From i t s  de f in i t i on  
heat-transfer coeff ic ient  may be obtained from equation (16) as 

hss = %,/(TW - T,), the  steady-state 

hss = 0.4799 * 
With t h i s ,  the  quasi-steady heat  t r ans fe r  may be determined by evaluat- 
ing the expression %s = hss(Tw - ToJ)inst' from which it  follows t h a t  

For the  s t ep  change i n  w a l l  temperature, Tw - T, i s  constant throughout 
t h e  t rans ien t  period and, as a consequence, the quasi-steady heat  t rans-  
fer  i s  ident ica l  t o  the steady-state heat t ransfer .  Hence, for t he  s t e p  
jump, the ordinate of f igure  2 also represents the  r a t i o  
e a s i l y  seen t h a t  quasi-steady conditions are not achieved during the  
t rans ien t  period. 

q/4sS. It i s  

Before leaving the  step-function case, it i s  of i n t e r e s t  t o  inquire 
as t o  whether comparisons are  possible between the  present r e su l t s  and 
those of previous analyses. Inasmuch as there  has been no p r i o r  study 
of the  t rans ien t  period, such comparisons are  only possible a t  t he  l i m -  
i t s  of s m a l l  and la rge  times. For exceedingly s m a l l  values of time, it 
has been already noted t h a t  heat  conduction dominates over convection. 
For t h i s  condition, the heat- t ransfer  predict ion of the  present analysis 
i s  given by equation (18), which may be rephrased as 

"he exact solution (ref .  9) for the  heat- t ransfer  response of a s o l i d  
body (no ve loc i t ies )  t o  a s t ep  change i n  surface temperature may be 
phrased i n  a form ident ica l  t o  equation ( 2 2 ) ,  with the  numerical con- 
s t a n t  taking a value of 0.472035 f o r  Pr = 0.7.  Thus, the  present pre- 
d ic t ion  l i e s  6 percent low f o r  t h i s  ea r ly  period. A t  the  other  extrem- 
i t y  of time, f o r  the  steady-state condition, the heat- t ransfer  result of 
reference 10 based on a numerical so lu t ion  of the  d i f f e r e n t i a l  energy 
equation' takes the same form as equation (16) herein, except t h a t  the  

* 

c 

'This i s  i n  contrm3istlnction t o  the  integrated energy equation 
here. .- - - 

c 

P 
CJl 
0 
P 
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constant i s  0.4958. 
cent. 

So, the current prediction i s  l o w  by about 3 per- 
This l e v e l  of accuracy i s  suf f ic ien t  f o r  almost all applications.  

GENEXALIZATION TO ARBITRARY TIME-DEPENDENT WALL TEMPERATWIF: 

The l i n e a r i t y  of the energy equation permits the use of a super- 
pos i t ion  technique t o  generalize the  step-function results. Consider a 
process i n  which there  is  no heat t ransfer  (i.e., Tw = T,) f o r  t < t*j 

and then, a t  t = t*, a s t ep  change i n  w a l l  temperature dTw i s  applied. 
The heat- t ransfer  response t o  such a process may be computed from equa- 
t i o n  (15) t o  be 

3 1 
dq = 'z dTw a,_,, t > t* - 

where t h e  notat ion +-t* is used t o  indicate  t h a t  A is a function of 
t - t* ra the r  than of t (s ince the t rans ien t  starts at t = t* in- 
stead of t = 0) .  But, as may be seen by re fer r ing  t o  f igure  3, t h i s  
s m d 1  s t e p  may be considered as an elementary pa r t  of an a r b i t r a r i l y  
var iable  w a l l  temperature. The heat-transfer response t o  such a time- 
dependent w a l l  temperature i s  found by in tegra t ing  equation ( 2 3 ) ,  which 
gives 

o r  

dTw, t* 

2 *t-t* 
q = - k  

where dimensionless var iables  have been introduced i n  equation (24b). 
I n  these equations, Tw 
variable  .iA ( o r  t*), and, hence, a second subscript  is  used. The 
notat ion cp indicates  t h a t  cp i s  t o  be regarded as a function of 

T - S*j  and, f o r  the purposes of the integrat ion,  the  abscissa  var iable  
of f igure  1 ought t o  be replaced by T - T*. As writ ten,  equations 
(24a) and (24b) apply t o  any temperature var ia t ion,  including s t ep  
 change^.^ However, i f  there  are  no f i n i t e  s t ep  changes i n  Tw, equa- 
t i o n  (24b) becomes 

is  taken as a function of the dummy in tegra t ion  

T-T* 

'Mathematically speaking, the in t eg ra l s  are  S t i l j e s  in tegra ls .  
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To i l l u s t r a t e  the use of these expressions, an example w i l l  be given i n  
a l a t e r  section. 

Thus far, consideration has been given t o  t r ans i en t s  which begin 
from a condition of no heat t ransfer  (i.e., 
where the t rans ien t  begins from an already established steady-state heat 
t r ans fe r  40 is  also handled by superposition. By incorporating 
i n t o  equation (24a), it follows t h a t  

= Tm). The s i tua t ion  

or 

Equations (24) and (25) give, a t  any time T, the  heat t r a n s f e r  
associated with a temperature var ia t ion over the in t e rva l  from T = 0 
t o  T = T. On t h e  other hand, the quasi-steady heat-transfer, predic- 
t i o n  a t  time ‘t i s  computed from equation (21)  as 

With t h i s ,  and with equation (25b), the r a t i o  of the instantaneous t o  
the quasi-steady heat t r ans fe r  takes the  form 

This expression may be used t o  determine those times during the t ran-  
s i e n t  period at  which the s t a t e  is essent ia l ly  quasi-steady (e.g,, 
within 5 or 2 percent). 



HEAT-TRANSFER RESULTS FOR LINEARLY VARYING W A L L  TEMPERATWiE 

To i l l u s t r a t e  t he  use of the generalized heat- t ransfer  r e su l t s ,  
consideration i s  given t o  the case o f  a w a l l  temperature which var ies  
l i n e a r l y  with time, t h a t  is, 

Tw - T, = A*?* (28) 

Here has been used as the running time var iable  i n  ant ic ipat ion 
of appl icat ion t o  equation (25b). 
gives dTw,T* = A* dT*. With t h i s  and (Tw - T,)o = 0, equation (25b) 
becomes 

T* 
Different ia t ion of  equation (28) 

For t h e  integrat ion,  it is convenient t o  introduce a new dummy variable  
tj by the  def ini t ion:  5 = T - T*, from which it follows t h a t  

The notat ion ~p 

is  now a function o f  t he  s ingle  variable 5 .  For t he  purposes of  in te -  
grat ion,  both f igure 2 and equation (11) d i r e c t l y  give the  required re- 
l a t i o n  between cp and the  running integrat ion var iable  5 .  

means t h a t  a s  a consequence of the  transformation, 'p 5 

The var ia t ion  of the heat t r ans fe r  with time, obtained from inte-  
gra t ing  equation (29a) ,  i s  presented as the s o l i d  curve i n  f igure  4. 
A t  very ear ly  times, the  heat t ransfer  i s  s m a l l  because the driving 
force Tw - T, is  also s m a l l .  The heat t r ans fe r  increases monotoni- 
c a l l y  with time because of the sustained increase of 
steady-state heat- t ransfer  condition i s  never achieved. 

Tw - T,. A 

It i s  possible t o  derive simple asymptotic expressions f o r  the  re- 
sults of f igure 4. A t  ear ly  times, the  var ia t ion  of cp with 5 i s  
given by equation (12) .  
t h a t  

Uti l iz ing t h i s ,  it i s  found from equation (29a) 
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A p lo t  of t h i s  r e l a t i o n  i s  given as the dotted s t r a i g h t  l i n e  i n  f igure 
4. It i s  found t h a t ,  f o r  T = 0.392, the deviation between the dotted 
l i n e  and the s o l i d  curve i s  2 percent; and, as t i m e  decreases, t h i s  
deviation diminishes. A t  the other extreme, f o r  l a rge  t i m e s ,  'p becomes 
essent ia l ly  constant. Then, i n  equation (29a), the in t eg ra l  can be con- 
veniently subdivided in to  two pa r t s  i n  the following wayr 

4 
where T ~ ,  the time at which 'p = 1.177, i s  found from equation (11) t o  
be 6.522. The in t eg ra l  from 0 t o  'rl has been carr ied out numerically 
and has the value 6.459. 
t h e  heat-transfer asymptote f o r  l a rge  t i m e s  as followsr 

With t h i s  information, equation (29a) yields 

1 / 2  
= 0.5187 + 0.4799 7 

kA* 

This equation i s  plot ted a s  t he  dashed l i n e  i n  f igure 4. A t  T = 1.45, 
equation (31) i s  good t o  within 2 percent; and, with increasing time, 
the deviation becomes progressively smaller. It i s  in te res t ing  t o  ob- 
serve t h a t  the two asymptotic curves form a r a the r  t i g h t  bracket around 
t h e  s o l i d  curve which i s  the  exact representation of equation (29a). 

It i s  of i n t e r e s t  t o  compare the quasi-steady heat-transfer predic- 
t i ons  with those of f igure 4. The general expression f o r  q / ~ ,  its 

given by equation (27) may be specialized t o  the following form for the  
par t icu lar  case now under consideration t 

The results obtained by integrat ing equation (32)  have been p lo t ted  i n  
f igu re  5. As expected, t he  greatest  deviations between the  instantan- 
eous and the  quasi-steady value occur a t  the beginning of  the t ran-  
s i en t .  As  time proceeds, quasi-steady conditions a re  approached more 
and more closely. Also shown i n  f igure 5 are asymptotic l i n e s  appro- 
p r i a t e  t o  s m a l l  and large values of time. The equations of these l i n e s  
are a s  follows I 

q 

1.849 Small t i m e s :  ( 3 3 4  

%is i s  su f f i c i en t ly  close t o  the steady-stgte value of 1.17705 t o  
provide four figure r e s u l t s  fo r  the heat transfer. 

M 
I 
tn 
0 
rp 

z 

c 
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Large timesr 1.081 - =  1-t- 
2 gss 

me range of appl icabi l i ty  i s  the same as tha t  for the  asymptotic l i n e s  
of f igure 4. 
t i a l l y  quasi-steady conditions axe achieved. For most p rac t i ca l  pur- 
poses, the s t a t e  can be considered quasi-s tedy when q/gss = 1.05. 
condition i s  achieved when 

From equation (33b), the time can be determined when essen- 

This 

Comparison with equation (19) shows that  a much longer time i s  required 
t o  achieve quasi-steady conditions during a l i n e a r  temperature r i s e  than 
a f t e r  a s tep  jump. This i s  not surprising since i n  the former case the  
wall boundary condition i s  continually changing with time and requires 
a continuous pussuit  by the flowj while, i n  the l a t t e r  case, the boundary 
condition changes abruptly and thereaf ter  remains constant. 

PROCEDURE FOR RAPID CALCULATIONS 

By inspection of' heat-transfer re la t ions (24) t o  ( 2 7 ) ,  it i s  seen 
t h a t  computations f o r  the case of an a rb i t ra ry  time-dependent w a l l  tem- 
perature require the knowledge of the boundary-layer thickness cp f o r  
the  step-function case. It i s  clear t h a t  these heat-transfer computa- 
t ions  could be shortened i f  a simple analyt ical  expression f o r  cp were 
available.  A representation which imedia te i j -  sllggests i t s e l f  is  the 
dotted and dashed envelope curve of f igure 1, the mathematical descrip- 
t i o n  of which i s  

cp = 1.27303 T 1/2 

9 = 1.17705 3 0 < T < 0.855 

T > 0.855 

- -  
- ( 3 5 4  

I n  using these expressions, it must be real ized tha t  some sac r i f i ce  i n  
precision i s  being made i n  
I n  terms of T - T* as an 

order t o  achieve computational ease and speed. 
independent variable,  equation (35a) becomes 

= 1.27303(7 

= 1.17705 

%-T* 

%-T* 
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With t h i s  approximation f o r  cp, the  heat-transfer equation (25b) 
corresponding t o  an a r b i t r a r i l y  prescribed var ia t ion i n  T, becomes 

'% T* [ -1 (36a) 
= 0.4799(Tw - T,) + 0.4437 

k 0 9 

indicates t h a t  - T, i s  e v d -  where the notation (Tw - 
uated at T* = r - 0.855. I n  deriving equation (36b) from (25b), cog- 
nizance has been taken of the f a c t  t h a t  cp i s  constant as T* ranges 
f r o m  0 t o  T - 0.855, The r a t i o  of the instantaneous t o  the quasi- 
steady heat t ransfer  as given by equation (27)  may also be modified by 
introducing the simplified expressions f o r  cp, which leads t o  the form 

'm) T-0. 855 

r > 0.855 

To i l l u s t r a t e  the application of these simplified heat-transfer 
relationships, a t ten t ion  i s  directed t o  the  case of a l i n e a r l y  varying 
w a l l  temperature as described by equation (2%). By noting t h a t  

I (38) 



b 

M 
I 
V 
V 
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I 

? 

# 

I 

it is found by d i r ec t  integrat ion of equation (36) t h a t  

0 < ‘c < 0.855 - -  (39 4 

These heat-transfer results are plot ted i n  f igure 6 as a dot-dashed 
curve. Also shown there  f o r  comparison purposes i s  a s o l i d  curve repre- 
senting the  r e su l t s  of the more complete calculat ion which has already 
been described i n  a previous section of the report  and i n  f igure 4. 
i s  seen t h a t  the performance of the  rapid computational procedure i s  
qui te  s a t i s f a c t o q j  the m a x i m u m  deviation f romthe  so l id  curve i s  only 
7 percent, while the  deviat ioneover  most of the  range are  much smaller. 
The relat ionship between the instantaneous and quasi-steady heat t rans-  
f e r  f o r  the l i nea r ly  varying w a l l  temperature mw be computed from equa- 
t i o n  (37) after introducing (38). 
ob t aine d 

It 

By d i r ec t  integrat ion there  i s  

g 1.849 
\s = 71/2 0 < T < 0.855 - -  (ma) 

T >  0.855 0,8549 
‘c 3 

L = l +  
94s 

There is  no need t o  p lo t  these resul ts  since t h e i r  percentage deviations 
from the r e su l t s  of the complete computation are ident ica l  t o  those al- 
ready noted with re la t ion  %Q t he  heat-transfer r e su l t s  of f igure 6. 
From equation (ab), the time a% which q/9sS = 1.05 i s  found t o  be 

X 
‘c5$ = 17.1 or t5$ = 17.1 - 

ua3 
This is  i n  reasonable agreement with the value of 21.65 previously 
obtained. 

The sa t i s fac tory  performance of the rapid computation procedure f o r  
the case of the l i nea r ly  varying w a l l  temperature helps t o  es tab l i sh  con- 
fidence i n  i t s  accuracy. But, even with t h i s ,  it i s  worthwhile t o  apply 
it with caution i n  s i tua t ions  where the time-dependence of 
i r regular .  

Tw i s  very 
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APPLICATION OF RESULTS 

Application t o  Unsteady Heating or Cooling of a Wall 

Now, a t ten t ion  is turned t o  demonstrating the f a c i l i t y  with which 
I n  many s i tua t ions ,  the time-variation of 

Rather, it would be de- 
the  resu l t s  may be applied. 
t he  w a l l  temperature might not be prescribed, 
termined by the balance between the  r a t e  of convective heat t r ans fe r  t o  
the  w a l l  and the capacity of the  w a l l  t o  absorb t h i s  
simplest s i t ua t ion  of high-conductivity w a l l  material  and no heat losses ,  
the  temperature r i s e  of the w a l l  is  given by 

energy. For the  M 
I cn 
0 
tP 

dr ,  
a t  - bq 
- -  

where b includes the w a l l  spec i f ic  heat,  density, and thickness. 
Changing notation from t t o  T* and inser t ing  i n  equation (25b) yield 
an in tegra l  equation f o r  
t i o n  of the  heat-transfer r a t e  with time. 
w a l l  temperature could be found from equation (42).  

q, solut ion of which would provide the varia- 
Then, the var ia t ion of the 

Further complications could be introduced t o  account f o r  w a l l  con- 
However, these de t a i l s  need not be duction, heat losses ,  and so for th .  

considered here. 

Application t o  Variable Properties and Viscous Dissipation 

The analysis given i n  t h i s  report  has been b u i l t  on the supposition 
of an incompressible, constant-property, nondissipative flow. It i s  de- 
s i r a b l e  t o  have some way of determining the heat t r ans fe r  when compres- 
s i b i l i t y ,  e t  ce te ra  w e  present. 
problem would be a very formidable task,  However, on the  basis of what 
has been done here, it i s  possible t o  o f f e r  a simple approach f o r  obtain- 
ing a f irst  estimate of the heat t ransfer  t o  these more complicated 
flows. By using the given w a l l  temperature 
information, the r a t i o  q/\s 

t i o n  of time. 
not from equation (26), but ra ther  by applying the steady-state heat- 
t r ans fe r  coefficients appropriate t o  the compressible, variable-property, 
diss ipat ive problem. Then, with t h i s  value of 
the  r e s u l t  of equation ( 2 7 ) ,  it i s  expected t h a t  a fa i r  estimate of 
could be obtained. 

To make a complete analysis of t h i s  

The procedure i s  as follows: 
i s  computed from equation (27) as a func- 

Then, the quasi-steady heat t ransfer  would be evaluated 
- 

i n  conjunction with 
gas 

q 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, July 22, 1959 



APPENDIX - SOLUTION OF EQUATION (8) BY PARTIAL FRACTIONS 

1 ,  

1 

b 

c 

I 

1 3  u 
i u  

The f i r s t  s tep  i n  attacking equation (8) is  t o  determine the s i x  
factors  of the polynomial which appears i n  the denominator, the roots 
of which are 

cpl = 9.44638 'pz = 1.17705 

= 2,68534 & 2.82741 i 93,4 

d," 

With these, the  left-hand s ide of the 
1 Cp, = -0.536598 0.729478 i 

equation can be wri t ten as 
r 

1 

where a p a r t i a l  f rac t ion  expansion has been used t o  obtain the last form. 
The constants A, B, . . ., F are found by the  usual methods. To i l l u s -  
t r a t e ,  a t ten t ion  i s  focused on finding A. 
t i p l i e d  through by 

F i r s t ,  equation (A2) is  m u l -  
cp - (pl, which gives 

Now, equations (A2) and (A3) must apply f o r  all values of 
par t icu lar ,  for cp = cpl. 

ql and, i n  
For t h i s  choice, equation (A3) becomes 

which is an arithmetic expression f o r  A. The constants B, C, . . ., 
F are  determined i n  an andogous fashion. 

m e  end r e s u l t  of these computations i s  exhibited i n  equation (10). 
Since the complex roots are conjugates, the p a r t i a l  f rac t ion  expansion 
may be simplified by combining terms. I n  t h i s  way, the cp - 'pg and 
cp - cp4 terms of the expansion combine t o  form the  t h i r d  term of equa- 
t i o n  (10); while cp - cp5 and cp - (p6 give r i s e  t o  the  fourth term of 
t h a t  e quation. 
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t i o n  i n  wall temperature.  
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